To solve this problem, we can break it down step by step.
### Given Data:
- **Voltage (V)**: 500 V
- **Frequency (f)**: 50 Hz
- **Poles (P)**: 6
- **Speed (N)**: 975 RPM
- **Input Power (P_in)**: 40 kW
- **Stator Losses (P_stator)**: 1 kW
- **Friction and Windage Losses (P_friction)**: 2 kW
### Step 1: Calculate the Synchronous Speed (N_s)
The synchronous speed of the motor can be calculated using the formula:
\[
N_s = \frac{120 \cdot f}{P}
\]
Substituting the values:
\[
N_s = \frac{120 \cdot 50}{6} = 1000 \text{ RPM}
\]
### Step 2: Calculate Slip (S)
Slip (S) is given by the formula:
\[
S = \frac{N_s - N}{N_s} \cdot 100
\]
Substituting the values:
\[
S = \frac{1000 - 975}{1000} \cdot 100 = 2.5\%
\]
### Step 3: Calculate Rotor Copper Loss (P_rotor)
The rotor copper loss can be calculated as:
\[
P_{rotor} = P_{in} - P_{stator} - P_{friction}
\]
Substituting the values:
\[
P_{rotor} = 40 \text{ kW} - 1 \text{ kW} - 2 \text{ kW} = 37 \text{ kW}
\]
### Step 4: Calculate Shaft Power (P_shaft)
Shaft power is given by:
\[
P_{shaft} = P_{in} - P_{stator} - P_{friction} - P_{rotor}
\]
However, we already know that the rotor copper loss is included in the input power calculation, so we can consider:
\[
P_{shaft} = P_{in} - P_{stator} - P_{friction}
\]
Substituting the values:
\[
P_{shaft} = 40 \text{ kW} - 1 \text{ kW} - 2 \text{ kW} = 37 \text{ kW}
\]
### Step 5: Calculate Efficiency (η)
Efficiency can be calculated using the formula:
\[
\eta = \frac{P_{shaft}}{P_{in}} \cdot 100
\]
Substituting the values:
\[
\eta = \frac{37 \text{ kW}}{40 \text{ kW}} \cdot 100 = 92.5\%
\]
### Summary of Results:
1. **Slip (S)**: \(2.5\%\)
2. **Rotor Copper Loss (P_rotor)**: \(37 \text{ kW}\)
3. **Shaft Power (P_shaft)**: \(37 \text{ kW}\)
4. **Efficiency (η)**: \(92.5\%\)