A 3300 / 250V, 50Hz single-phase transformer is built on a core having an effective cross-sectional area of 125 cm² and 70 turns on the low voltage winding. Calculate: (i) the value of max flux density and (ii) number of turns on the high voltage windings.
by 18 views

2 Answers

✔️
Best answer
Let's break down the solution for both parts of the problem.

### Given data:
- Transformer rating: 3300 / 250V
- Frequency \( f = 50 \, \text{Hz} \)
- Cross-sectional area of the core \( A = 125 \, \text{cm}^2 = 0.0125 \, \text{m}^2 \) (since \( 1 \, \text{cm}^2 = 0.0001 \, \text{m}^2 \))
- Turns on the low voltage winding: \( N_L = 70 \)
- Low voltage \( V_L = 250 \, \text{V} \)
- High voltage \( V_H = 3300 \, \text{V} \)

### (i) Calculate the maximum flux density \( B_{max} \)
The formula for the induced EMF in a transformer winding is given by:

\[
E = 4.44 \times f \times N \times \Phi_{max}
\]

Where:
- \( E \) is the RMS voltage,
- \( f \) is the frequency,
- \( N \) is the number of turns,
- \( \Phi_{max} \) is the maximum flux in the core.

Rearranging for \( \Phi_{max} \):

\[
\Phi_{max} = \frac{E}{4.44 \times f \times N}
\]

For the low voltage side:
- \( E_L = 250 \, \text{V} \)
- \( N_L = 70 \, \text{turns} \)
- \( f = 50 \, \text{Hz} \)

Substitute these into the formula:

\[
\Phi_{max} = \frac{250}{4.44 \times 50 \times 70} = \frac{250}{15540} = 0.0161 \, \text{Wb}
\]

Now, the flux density \( B_{max} \) is given by:

\[
B_{max} = \frac{\Phi_{max}}{A}
\]

Substituting the values of \( \Phi_{max} \) and \( A \):

\[
B_{max} = \frac{0.0161}{0.0125} = 1.29 \, \text{T} \, \text{(Tesla)}
\]

So, the maximum flux density is \( 1.29 \, \text{T} \).

### (ii) Calculate the number of turns on the high voltage winding \( N_H \)

The voltage ratio of a transformer is directly proportional to the turns ratio:

\[
\frac{V_H}{V_L} = \frac{N_H}{N_L}
\]

Rearranging to find \( N_H \):

\[
N_H = \frac{V_H}{V_L} \times N_L = \frac{3300}{250} \times 70 = 924
\]

So, the number of turns on the high voltage winding is \( 924 \).

### Final answers:
1. The maximum flux density \( B_{max} = 1.29 \, \text{T} \).
2. The number of turns on the high voltage winding \( N_H = 924 \).
by
0 votes
Let's solve this step-by-step.

### Given Data:
- Primary voltage (\( V_p \)) = 3300 V
- Secondary voltage (\( V_s \)) = 250 V
- Frequency (\( f \)) = 50 Hz
- Cross-sectional area of the core (\( A \)) = 125 cm² = \( 125 \times 10^{-4} \) m²
- Number of turns on the low voltage winding (\( N_s \)) = 70 turns

### (i) Calculation of Maximum Flux Density:

1. **Calculate the maximum flux (\( \Phi_{\text{max}} \))**:

   The voltage per turn on the secondary side is given by:
   \[
   V_s = 4.44 \cdot f \cdot N_s \cdot \Phi_{\text{max}}
   \]
   Rearranging for \( \Phi_{\text{max}} \):
   \[
   \Phi_{\text{max}} = \frac{V_s}{4.44 \cdot f \cdot N_s}
   \]
   Substituting the given values:
   \[
   \Phi_{\text{max}} = \frac{250}{4.44 \cdot 50 \cdot 70}
   \]
   \[
   \Phi_{\text{max}} \approx \frac{250}{15540} \approx 0.0161 \text{ Wb}
   \]

2. **Calculate the flux density (\( B_{\text{max}} \))**:

   The flux density is given by:
   \[
   B_{\text{max}} = \frac{\Phi_{\text{max}}}{A}
   \]
   Substituting the values:
   \[
   B_{\text{max}} = \frac{0.0161}{125 \times 10^{-4}}
   \]
   \[
   B_{\text{max}} \approx 1.288 \text{ T}
   \]

### (ii) Calculation of the Number of Turns on the High Voltage Winding:

1. **Use the turns ratio formula**:

   The turns ratio \( \frac{N_p}{N_s} \) is given by:
   \[
   \frac{N_p}{N_s} = \frac{V_p}{V_s}
   \]
   Rearranging to find \( N_p \):
   \[
   N_p = \frac{V_p \cdot N_s}{V_s}
   \]
   Substituting the values:
   \[
   N_p = \frac{3300 \cdot 70}{250}
   \]
   \[
   N_p = 924
   \]

### Summary:
- **Maximum Flux Density** (\( B_{\text{max}} \)) = 1.288 T
- **Number of Turns on the High Voltage Winding** (\( N_p \)) = 924 turns
by
0 votes
Next ⇨
⇦ Back