In electrical engineering, **Z parameters** (impedance parameters) and **Y parameters** (admittance parameters) are used to describe the behavior of two-port networks, such as amplifiers, transmission lines, and filters. They both represent the relationship between voltages and currents at the input and output of the network, but they do so in different ways.
### Z Parameters (Impedance Parameters):
The Z parameters relate the voltages at the ports to the currents entering the ports. For a two-port network, the Z parameters are defined as:
\[
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
=
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\]
Where:
- \(V_1\) and \(V_2\) are the voltages at port 1 and port 2, respectively.
- \(I_1\) and \(I_2\) are the currents entering port 1 and port 2, respectively.
- \(Z_{11}, Z_{12}, Z_{21}, Z_{22}\) are the impedance parameters of the network.
### Y Parameters (Admittance Parameters):
The Y parameters, on the other hand, relate the currents at the ports to the voltages applied at the ports. The Y parameter matrix is defined as:
\[
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
=
\begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
\]
Where:
- \(Y_{11}, Y_{12}, Y_{21}, Y_{22}\) are the admittance parameters of the network.
- \(I_1\) and \(I_2\) are the currents at port 1 and port 2.
- \(V_1\) and \(V_2\) are the voltages applied at port 1 and port 2.
### Relationship Between Z and Y Parameters:
Z and Y parameters are inversely related. Specifically, the Y parameter matrix is the inverse of the Z parameter matrix, and vice versa. This means that if you know the Z parameters of a two-port network, you can calculate the Y parameters by finding the inverse of the Z matrix:
\[
\mathbf{Y} = \mathbf{Z}^{-1}
\]
Conversely, if you know the Y parameters, you can find the Z parameters by inverting the Y matrix:
\[
\mathbf{Z} = \mathbf{Y}^{-1}
\]
Given the Z parameters:
\[
\mathbf{Z} =
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
\]
The Y parameters are computed by inverting the Z matrix:
\[
\mathbf{Y} =
\frac{1}{\Delta Z}
\begin{bmatrix}
Z_{22} & -Z_{12} \\
-Z_{21} & Z_{11}
\end{bmatrix}
\]
Where \( \Delta Z \) is the determinant of the Z matrix:
\[
\Delta Z = Z_{11}Z_{22} - Z_{12}Z_{21}
\]
Similarly, if you have the Y parameters, the Z parameters can be computed as:
\[
\mathbf{Z} = \frac{1}{\Delta Y}
\begin{bmatrix}
Y_{22} & -Y_{12} \\
-Y_{21} & Y_{11}
\end{bmatrix}
\]
Where \( \Delta Y = Y_{11}Y_{22} - Y_{12}Y_{21} \).
### Summary:
- **Z parameters** (impedance parameters) relate port voltages to currents.
- **Y parameters** (admittance parameters) relate port currents to voltages.
- The Y parameters are the inverse of the Z parameters, and vice versa.
This relationship is key in network analysis and is particularly useful in converting between different parameter representations of a two-port network.