Writing a Laplace transform involves transforming a function of time, \( f(t) \), into a function of a complex variable, \( s \). This process is useful in various fields such as engineering, physics, and applied mathematics, particularly for solving differential equations.
Here's a detailed breakdown of how to write and compute a Laplace transform:
### 1. **Understanding the Definition**
The Laplace transform \( \mathcal{L}\{f(t)\} \) of a function \( f(t) \) is defined by the integral:
\[ \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt \]
where:
- \( t \) is the time variable (usually \( t \geq 0 \)),
- \( s \) is a complex variable (usually \( s = \sigma + j\omega \), where \( \sigma \) and \( \omega \) are real numbers, and \( j \) is the imaginary unit),
- \( F(s) \) is the resulting function in the \( s \)-domain.
### 2. **Applying the Definition**
To apply the definition, follow these steps:
- **Identify the function \( f(t) \)**: This is the time-domain function you want to transform.
- **Set up the integral**: Substitute \( f(t) \) into the integral formula \( \int_{0}^{\infty} e^{-st} f(t) \, dt \).
- **Evaluate the integral**: Perform the integration with respect to \( t \).
### 3. **Example**
Let’s compute the Laplace transform of a simple function, \( f(t) = e^{at} \), where \( a \) is a constant.
Using the definition:
\[ \mathcal{L}\{e^{at}\} = \int_{0}^{\infty} e^{-st} e^{at} \, dt \]
Combine the exponents:
\[ = \int_{0}^{\infty} e^{(a - s)t} \, dt \]
This is an exponential integral. For convergence, \( \text{Re}(s) > a \). Integrate:
\[ \int_{0}^{\infty} e^{(a - s)t} \, dt = \left[ \frac{e^{(a - s)t}}{a - s} \right]_{0}^{\infty} \]
Evaluating the integral:
- At \( t = \infty \), \( e^{(a - s)t} \) approaches 0 if \( \text{Re}(s) > a \).
- At \( t = 0 \), \( e^{(a - s)t} = 1 \).
Thus:
\[ \mathcal{L}\{e^{at}\} = \frac{1}{s - a} \]
### 4. **Common Laplace Transforms**
Here are some standard transforms you might find useful:
- **Constant function** \( f(t) = 1 \): \( \mathcal{L}\{1\} = \frac{1}{s} \)
- **Power function** \( f(t) = t^n \): \( \mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \)
- **Sine function** \( f(t) = \sin(\omega t) \): \( \mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2} \)
- **Cosine function** \( f(t) = \cos(\omega t) \): \( \mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2} \)
### 5. **Inverse Laplace Transform**
To find the original function \( f(t) \) from \( F(s) \), you use the inverse Laplace transform, denoted \( \mathcal{L}^{-1}\{F(s)\} \). The inverse transform is not always straightforward but follows similar principles as the Laplace transform.
### Summary
To write and compute a Laplace transform, you:
1. Identify the time-domain function \( f(t) \).
2. Set up and evaluate the integral \( \int_{0}^{\infty} e^{-st} f(t) \, dt \).
3. Simplify the result to find \( F(s) \).
Understanding and applying these steps allows you to transform functions between the time domain and the complex \( s \)-domain, which is particularly helpful for solving linear differential equations and analyzing systems.