To address the problem regarding the voltage regulation of an alternator, we'll need to calculate several parameters based on the given data. Here's a step-by-step breakdown:
### Given Data
1. **Alternator Rating**: 400V, 10 kVA, 3-phase, star-connected.
2. **Resistance per Phase**: \( R = 1.0 \, \Omega \).
3. **Open Circuit Voltage per Phase**: \( V_{oc} = 90V \) for a field current of \( I_f = 1.0A \).
4. **Short Circuit Current per Phase**: \( I_{sc} = 15A \) for the same field current.
5. **Load Current**: \( I_L = 15A \) at a power factor (pf) of 0.8 lagging.
### Calculations
#### i) Synchronous Impedance
**Synchronous Impedance** (\(Z_s\)) is calculated from the open circuit voltage and short circuit current.
1. **Find the Synchronous Reactance** (\(X_s\)):
Given the short circuit current (\(I_{sc}\)) and the resistance per phase (\(R\)), we can find \(X_s\) using the formula:
\[
I_{sc} = \frac{V_{oc}}{Z_s}
\]
Rearranging, we get:
\[
Z_s = \frac{V_{oc}}{I_{sc}}
\]
\[
Z_s = \frac{90V}{15A} = 6 \, \Omega
\]
2. **Calculate the Synchronous Reactance** (\(X_s\)):
Using the resistance (\(R\)) and synchronous impedance (\(Z_s\)):
\[
Z_s^2 = R^2 + X_s^2
\]
\[
X_s^2 = Z_s^2 - R^2
\]
\[
X_s^2 = 6^2 - 1^2 = 36 - 1 = 35
\]
\[
X_s = \sqrt{35} \approx 5.92 \, \Omega
\]
3. **Synchronous Impedance** (\(Z_s\)):
\(Z_s = 6 \, \Omega\)
#### ii) Synchronous Reactance
The synchronous reactance \(X_s\) has been calculated as:
\[
X_s \approx 5.92 \, \Omega
\]
#### iii) Open Circuit Voltage Per Phase
The open circuit voltage per phase \(V_{oc}\) is already given as 90V for the field current of 1A. So:
\[
V_{oc} = 90V
\]
#### iv) Regulation While Supplying a Load Current of 15A at 0.8 Power Factor Lag
1. **Calculate the Terminal Voltage** (\(V_t\)):
The load is supplied at a power factor of 0.8 lagging. The voltage regulation is given by:
\[
\text{Voltage Regulation} = \frac{E - V_t}{V_t} \times 100\%
\]
Where \(E\) is the open circuit voltage and \(V_t\) is the terminal voltage under load.
2. **Determine the Current Component**:
\[
I_L = 15A \text{ at } \text{pf} = 0.8
\]
The load current can be resolved into real and reactive components:
\[
I_{L\text{(real)}} = I_L \times \text{pf} = 15A \times 0.8 = 12A
\]
\[
I_{L\text{(reactive)}} = I_L \times \sqrt{1 - \text{pf}^2} = 15A \times \sqrt{1 - 0.8^2} \approx 15A \times 0.6 = 9A
\]
The load impedance per phase is:
\[
Z_{load} = \frac{V_t}{I_L}
\]
The voltage drop due to reactance and resistance is:
\[
V_{drop} = I_L \times (R + jX_s)
\]
\[
V_{drop} = I_L \times (1 \Omega + j5.92 \Omega)
\]
The magnitude of the voltage drop is:
\[
|V_{drop}| = \sqrt{(I_L \times R)^2 + (I_L \times X_s)^2}
\]
\[
|V_{drop}| = \sqrt{(15 \times 1)^2 + (15 \times 5.92)^2} = \sqrt{225 + 527.04} \approx \sqrt{752.04} \approx 27.4V
\]
Finally, the terminal voltage \(V_t\) is:
\[
V_t = E - |V_{drop}|
\]
\[
V_t = 90V - 27.4V = 62.6V
\]
3. **Calculate the Voltage Regulation**:
\[
\text{Voltage Regulation} = \frac{E - V_t}{V_t} \times 100\%
\]
\[
\text{Voltage Regulation} = \frac{90V - 62.6V}{62.6V} \times 100\% \approx 44.1\%
\]
### Summary
- **Synchronous Impedance**: \(6 \, \Omega\)
- **Synchronous Reactance**: \(\approx 5.92 \, \Omega\)
- **Open Circuit Voltage Per Phase**: \(90V\)
- **Voltage Regulation**: \(\approx 44.1\%\)