To calculate the distribution factor (k_d) for a three-phase winding with 36 slots, 4 poles, and a single layer, we can use the following formula:
\[
k_d = \frac{\sin\left(\frac{m \cdot \pi}{P}\right)}{m \cdot \sin\left(\frac{\pi}{P}\right)}
\]
Where:
- \( m \) is the number of slots per pole per phase.
- \( P \) is the number of poles.
### Step 1: Calculate \( m \)
First, we need to determine the number of slots per pole per phase. This can be calculated using:
\[
m = \frac{\text{Total Slots}}{\text{Number of Phases} \times \text{Number of Poles}} = \frac{36}{3 \times 4} = \frac{36}{12} = 3
\]
### Step 2: Substitute Values into the Distribution Factor Formula
Now, substituting the values into the distribution factor formula:
- \( P = 4 \)
- \( m = 3 \)
\[
k_d = \frac{\sin\left(\frac{3 \cdot \pi}{4}\right)}{3 \cdot \sin\left(\frac{\pi}{4}\right)}
\]
### Step 3: Calculate Sine Values
- \(\sin\left(\frac{3\pi}{4}\right) = \sin\left(135^\circ\right) = \frac{\sqrt{2}}{2}\)
- \(\sin\left(\frac{\pi}{4}\right) = \sin\left(45^\circ\right) = \frac{\sqrt{2}}{2}\)
### Step 4: Plug in the Sine Values
\[
k_d = \frac{\frac{\sqrt{2}}{2}}{3 \cdot \frac{\sqrt{2}}{2}} = \frac{\frac{\sqrt{2}}{2}}{\frac{3\sqrt{2}}{2}} = \frac{1}{3}
\]
### Conclusion
The distribution factor \( k_d \) for a three-phase winding with 36 slots and 4 poles is:
\[
\boxed{\frac{1}{3}}
\]