To calculate the fault current and fault KVA on the High Tension (HT) side of the transformer, follow these steps:
### 1. **Determine the Fault Level on the Generator Side:**
**Generator Data:**
- **Voltage (V_g):** 11 kV (line-to-line)
- **Power (S_g):** 3000 kVA
- **Reactance (X_g):** 15% (or 0.15 per unit)
**Generators in Parallel:**
There are two generators operating in parallel, so their total reactance in parallel will be:
\[ X_{g,\text{total}} = \frac{X_g}{n} \]
where \( n \) is the number of generators.
For two generators:
\[ X_{g,\text{total}} = \frac{0.15 \times (11 \text{ kV})^2}{2 \times 3000 \text{ kVA}} \]
\[ X_{g,\text{total}} = \frac{0.15 \times 121}{6000} \]
\[ X_{g,\text{total}} = \frac{18.15}{6000} \]
\[ X_{g,\text{total}} = 0.003025 \text{ per unit} \]
### 2. **Calculate the Transformer Reactance:**
**Transformer Data:**
- **Voltage Ratio:** 11/22 kV
- **Rated Power (S_t):** 6000 kVA
- **Leakage Reactance (X_t):** 5% (or 0.05 per unit)
To find the reactance on the high tension (HT) side, convert it to the HT side. The transformer's reactance in per unit on the HT side can be calculated using the following formula:
\[ X_{t, \text{HT}} = X_t \times \left(\frac{V_{HT}}{V_{LT}}\right)^2 \]
where \( V_{HT} \) is the high voltage side (22 kV) and \( V_{LT} \) is the low voltage side (11 kV).
\[ X_{t, \text{HT}} = 0.05 \times \left(\frac{22}{11}\right)^2 \]
\[ X_{t, \text{HT}} = 0.05 \times 4 \]
\[ X_{t, \text{HT}} = 0.20 \text{ per unit} \]
### 3. **Calculate the Total Reactance on the HT Side:**
The total reactance on the HT side is the sum of the generators' reactance and the transformer's reactance:
\[ X_{total} = X_{g, \text{HT}} + X_{t, \text{HT}} \]
Since \( X_{g, \text{HT}} \) is already in per unit on the HT side, we add it directly:
\[ X_{total} = 0.003025 + 0.20 \]
\[ X_{total} = 0.203025 \text{ per unit} \]
### 4. **Calculate the Fault Current:**
The fault current in per unit can be calculated as:
\[ I_{fault} = \frac{1}{X_{total}} \]
So,
\[ I_{fault} = \frac{1}{0.203025} \]
\[ I_{fault} \approx 4.93 \text{ per unit} \]
To find the fault current in kA, we convert it to the actual fault current using the base current:
Base current on the HT side:
\[ I_{base, \text{HT}} = \frac{S_{base}}{\sqrt{3} \times V_{HT}} \]
\[ I_{base, \text{HT}} = \frac{6000 \text{ kVA}}{\sqrt{3} \times 22 \text{ kV}} \]
\[ I_{base, \text{HT}} \approx 157.5 \text{ A} \]
Thus,
\[ I_{fault} = 4.93 \times 157.5 \]
\[ I_{fault} \approx 776.5 \text{ A} \]
### 5. **Calculate the Fault KVA:**
The fault KVA on the HT side is:
\[ S_{fault} = I_{fault} \times V_{HT} / 1000 \]
\[ S_{fault} = 776.5 \text{ A} \times 22 \text{ kV} / 1000 \]
\[ S_{fault} \approx 17.1 \text{ MVA} \]
### Summary:
- **Fault Current (HT side):** Approximately 776.5 A
- **Fault KVA (HT side):** Approximately 17.1 MVA