To analyze a 1-phase half-controlled rectifier circuit with a resistive load, you need to determine the average output voltage and load current for different firing angles (\(\alpha\)).
### Given:
- Supply Voltage: \( V_s = 300 \sin(314t) \)
- Load Resistance: \( R = 100 \, \Omega \)
- Firing Angles: \( \alpha = 60^\circ \) and \( \alpha = 100^\circ \)
### Analysis of Half-Controlled Rectifier
A half-controlled rectifier circuit consists of a single SCR (Silicon Controlled Rectifier) and a diode. The output voltage and current depend on the firing angle \(\alpha\).
**1. Peak Voltage Calculation:**
The given supply voltage is \( V_s = 300 \sin(314t) \), where the angular frequency \( \omega \) is \( 314 \) rad/s.
The peak voltage \( V_m \) is given by:
\[ V_m = 300 \, \text{V} \]
**2. Average Output Voltage Calculation:**
The average output voltage \( V_{o_{avg}} \) for a half-controlled rectifier is given by:
\[ V_{o_{avg}} = \frac{V_m}{\pi} \left( \pi - \alpha \right) \]
where \(\alpha\) is the firing angle in radians.
Convert \(\alpha\) from degrees to radians:
\[ \alpha_{rad} = \frac{\alpha \times \pi}{180} \]
**For \(\alpha = 60^\circ\):**
\[ \alpha_{rad} = \frac{60 \times \pi}{180} = \frac{\pi}{3} \]
Substitute \(\alpha_{rad}\) into the formula:
\[ V_{o_{avg}} = \frac{300}{\pi} \left( \pi - \frac{\pi}{3} \right) \]
\[ V_{o_{avg}} = \frac{300}{\pi} \left( \frac{2\pi}{3} \right) \]
\[ V_{o_{avg}} = 300 \times \frac{2}{3} \]
\[ V_{o_{avg}} = 200 \, \text{V} \]
**For \(\alpha = 100^\circ\):**
\[ \alpha_{rad} = \frac{100 \times \pi}{180} = \frac{5\pi}{9} \]
Substitute \(\alpha_{rad}\) into the formula:
\[ V_{o_{avg}} = \frac{300}{\pi} \left( \pi - \frac{5\pi}{9} \right) \]
\[ V_{o_{avg}} = \frac{300}{\pi} \left( \frac{4\pi}{9} \right) \]
\[ V_{o_{avg}} = 300 \times \frac{4}{9} \]
\[ V_{o_{avg}} = 133.33 \, \text{V} \]
**3. Load Current Calculation:**
The load current \( I_{o} \) is given by:
\[ I_{o} = \frac{V_{o_{avg}}}{R} \]
**For \(\alpha = 60^\circ\):**
\[ I_{o} = \frac{200}{100} \]
\[ I_{o} = 2 \, \text{A} \]
**For \(\alpha = 100^\circ\):**
\[ I_{o} = \frac{133.33}{100} \]
\[ I_{o} = 1.333 \, \text{A} \]
### Summary
- **For \(\alpha = 60^\circ\):**
- Average Output Voltage: \( 200 \, \text{V} \)
- Load Current: \( 2 \, \text{A} \)
- **For \(\alpha = 100^\circ\):**
- Average Output Voltage: \( 133.33 \, \text{V} \)
- Load Current: \( 1.333 \, \text{A} \)