To analyze the alternating voltage given by the equation \( V = 230 \sin(314t) \), we can extract several key characteristics: frequency, maximum value, average value, and RMS (Root Mean Square) value.
### 1. Frequency
The voltage function is in the form \( V = V_m \sin(\omega t) \), where:
- \( V_m = 230 \, \text{V} \) (maximum value)
- \( \omega = 314 \, \text{rad/s} \)
The frequency \( f \) can be calculated from the angular frequency \( \omega \) using the relation:
\[
f = \frac{\omega}{2\pi}
\]
Substituting the value of \( \omega \):
\[
f = \frac{314}{2\pi} \approx \frac{314}{6.2832} \approx 50 \, \text{Hz}
\]
### 2. Maximum Value
The maximum value of the voltage, denoted as \( V_m \), is given directly in the equation:
\[
V_m = 230 \, \text{V}
\]
### 3. Average Value
For a sinusoidal waveform, the average value over a full cycle is zero. However, if we are interested in the average value over half a cycle (positive half), it can be calculated as:
\[
V_{avg} = \frac{V_m}{\pi}
\]
Calculating it:
\[
V_{avg} = \frac{230}{\pi} \approx \frac{230}{3.1416} \approx 73.24 \, \text{V}
\]
### 4. RMS Value
The RMS value for a sinusoidal waveform is given by:
\[
V_{rms} = \frac{V_m}{\sqrt{2}}
\]
Calculating the RMS value:
\[
V_{rms} = \frac{230}{\sqrt{2}} \approx \frac{230}{1.4142} \approx 162.63 \, \text{V}
\]
### Summary of Results
- **Frequency**: \( 50 \, \text{Hz} \)
- **Maximum Value**: \( 230 \, \text{V} \)
- **Average Value (over half cycle)**: \( 73.24 \, \text{V} \)
- **RMS Value**: \( 162.63 \, \text{V} \)