To solve this problem involving a three-phase induction motor, we can follow these steps:
### Given Data:
- Power input, \( P_{in} = 42 \, \text{kW} \)
- Stator losses, \( P_{stator} = 1.2 \, \text{kW} \)
- Friction and windage losses, \( P_{fw} = 1.8 \, \text{kW} \)
- Total losses, \( P_{loss} = P_{stator} + P_{fw} = 1.2 + 1.8 = 3.0 \, \text{kW} \)
- Speed, \( N = 970 \, \text{rpm} \)
- Number of poles, \( P = 6 \)
- Frequency, \( f = 50 \, \text{Hz} \)
### Step 1: Calculate Synchronous Speed
The synchronous speed \( N_s \) of a motor can be calculated using the formula:
\[
N_s = \frac{120 \cdot f}{P}
\]
Substituting the values:
\[
N_s = \frac{120 \cdot 50}{6} = 1000 \, \text{rpm}
\]
### Step 2: Calculate Slip
Slip \( s \) is calculated using the formula:
\[
s = \frac{N_s - N}{N_s}
\]
Substituting the values:
\[
s = \frac{1000 - 970}{1000} = \frac{30}{1000} = 0.03 \, \text{or} \, 3\%
\]
### Step 3: Calculate Rotor Output
The rotor output power \( P_{rotor} \) can be calculated as:
\[
P_{rotor} = P_{in} - P_{loss}
\]
Substituting the values:
\[
P_{rotor} = 42 \, \text{kW} - 3.0 \, \text{kW} = 39.0 \, \text{kW}
\]
### Step 4: Calculate Rotor Copper Loss
The rotor copper loss can be found using the slip and rotor output power. The rotor copper loss \( P_{copper} \) is given by:
\[
P_{copper} = s \cdot P_{rotor}
\]
Substituting the values:
\[
P_{copper} = 0.03 \cdot 39.0 \, \text{kW} = 1.17 \, \text{kW}
\]
### Step 5: Calculate Efficiency
Efficiency \( \eta \) can be calculated using the formula:
\[
\eta = \frac{P_{rotor}}{P_{in}} \times 100
\]
Substituting the values:
\[
\eta = \frac{39.0}{42.0} \times 100 = 92.86\%
\]
### Summary of Results:
i) Slip: \( 3\% \)
ii) Rotor Output: \( 39.0 \, \text{kW} \)
iii) Rotor Copper Loss: \( 1.17 \, \text{kW} \)
iv) Efficiency: \( 92.86\% \)
These calculations provide a comprehensive understanding of the motor's performance based on the given data.