To solve the problem, let's break it down into parts.
### Given Data:
- **Rated Voltage (V)**: 400V
- **Frequency (f)**: 60Hz
- **Number of Poles (P)**: 6
- **Power Input (P\(_{in}\))**: 40 kW = 40,000 W
- **Power Factor (PF)**: 0.8 (lagging)
- **Stator Losses**: 1000 W
- **Friction and Windage Losses**: 2000 W
- **Rotor Speed (N\(_r\))**: 1140 RPM
### I) **Slip (s)**
First, we need to calculate the synchronous speed (N\(_s\)):
\[
N_s = \frac{120 \times f}{P}
\]
Substitute the given values:
\[
N_s = \frac{120 \times 60}{6} = 1200 \text{ RPM}
\]
Now, slip \( s \) is calculated using the formula:
\[
s = \frac{N_s - N_r}{N_s}
\]
Substitute the synchronous speed \(N_s\) and rotor speed \(N_r\):
\[
s = \frac{1200 - 1140}{1200} = \frac{60}{1200} = 0.05
\]
So, the slip \( s \) is **5%**.
### II) **Rotor Copper Loss (P\(_{rcl}\))**
The total input power to the motor is 40,000 W, and the stator losses are 1000 W. The power transferred to the rotor \( P_{gross} \) can be calculated as:
\[
P_{gross} = P_{in} - \text{Stator Losses}
\]
\[
P_{gross} = 40,000 - 1,000 = 39,000 \text{ W}
\]
The rotor copper loss is given by:
\[
P_{rcl} = s \times P_{gross}
\]
Substitute the values of \( s \) and \( P_{gross} \):
\[
P_{rcl} = 0.05 \times 39,000 = 1,950 \text{ W}
\]
### Summary:
- **Slip (s)**: 5%
- **Rotor Copper Loss (P\(_{rcl}\))**: 1950 W