To convert Z-parameters (impedance parameters) to Y-parameters (admittance parameters), you can use a matrix transformation. Here’s a step-by-step guide to converting Z-parameters to Y-parameters:
### Z-Parameters and Y-Parameters Overview
- **Z-parameters (Impedance Parameters)** describe the relationship between the voltages and currents at the ports of a network. For a two-port network, the Z-parameters are defined as:
\[
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
=
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\]
Where:
- \( V_1 \) and \( V_2 \) are the voltages at the ports.
- \( I_1 \) and \( I_2 \) are the currents through the ports.
- \( Z_{11} \), \( Z_{12} \), \( Z_{21} \), and \( Z_{22} \) are the Z-parameters.
- **Y-parameters (Admittance Parameters)** describe the relationship between the currents and voltages at the ports of a network. For a two-port network, the Y-parameters are defined as:
\[
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
=
\begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
\]
Where:
- \( Y_{11} \), \( Y_{12} \), \( Y_{21} \), and \( Y_{22} \) are the Y-parameters.
### Conversion Formula
The relationship between Z-parameters and Y-parameters can be expressed through matrix inversion. Specifically, the Y-parameters are the inverse of the Z-parameter matrix. Here's how you can find them:
1. **Write down the Z-parameter matrix:**
\[
\mathbf{Z} =
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
\]
2. **Find the inverse of the Z-matrix:**
The inverse of a 2x2 matrix \( \mathbf{Z} \) is given by:
\[
\mathbf{Y} = \mathbf{Z}^{-1} =
\frac{1}{\text{det}(\mathbf{Z})}
\begin{bmatrix}
Z_{22} & -Z_{12} \\
-Z_{21} & Z_{11}
\end{bmatrix}
\]
where \(\text{det}(\mathbf{Z})\) is the determinant of the Z-matrix, calculated as:
\[
\text{det}(\mathbf{Z}) = Z_{11} \cdot Z_{22} - Z_{12} \cdot Z_{21}
\]
3. **Calculate the Y-parameter matrix:**
Substituting the determinant and the cofactor matrix into the formula gives:
\[
\mathbf{Y} =
\frac{1}{Z_{11} \cdot Z_{22} - Z_{12} \cdot Z_{21}}
\begin{bmatrix}
Z_{22} & -Z_{12} \\
-Z_{21} & Z_{11}
\end{bmatrix}
\]
### Example
Let’s work through an example to make it clearer.
Suppose you have the following Z-parameters:
\[
\mathbf{Z} =
\begin{bmatrix}
10 & 2 \\
3 & 5
\end{bmatrix}
\]
1. **Calculate the determinant:**
\[
\text{det}(\mathbf{Z}) = (10 \cdot 5) - (2 \cdot 3) = 50 - 6 = 44
\]
2. **Find the inverse matrix:**
\[
\mathbf{Z}^{-1} =
\frac{1}{44}
\begin{bmatrix}
5 & -2 \\
-3 & 10
\end{bmatrix}
\]
3. **Compute the Y-parameters:**
\[
\mathbf{Y} =
\frac{1}{44}
\begin{bmatrix}
5 & -2 \\
-3 & 10
\end{bmatrix}
=
\begin{bmatrix}
\frac{5}{44} & -\frac{2}{44} \\
-\frac{3}{44} & \frac{10}{44}
\end{bmatrix}
=
\begin{bmatrix}
0.1136 & -0.0455 \\
-0.0682 & 0.2273
\end{bmatrix}
\]
So, the Y-parameter matrix is:
\[
\mathbf{Y} =
\begin{bmatrix}
0.1136 & -0.0455 \\
-0.0682 & 0.2273
\end{bmatrix}
\]
### Summary
To convert Z-parameters to Y-parameters:
1. Write down the Z-parameter matrix.
2. Compute the determinant of this matrix.
3. Find the cofactor matrix of the Z-matrix.
4. Multiply the cofactor matrix by the reciprocal of the determinant to get the Y-parameter matrix.
This process can be applied similarly for networks with more ports, although the calculations will be more complex for larger matrices.