To convert **Z-parameters** (impedance parameters) to **Y-parameters** (admittance parameters), follow these steps:
### Matrix Representation:
If you have the Z-parameter matrix:
\[
\mathbf{Z} = \begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
\]
The Y-parameter matrix is the inverse of the Z-parameter matrix:
\[
\mathbf{Y} = \mathbf{Z}^{-1}
\]
Thus,
\[
\mathbf{Y} = \begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix} = \frac{1}{\text{Det}(\mathbf{Z})} \cdot \begin{bmatrix}
Z_{22} & -Z_{12} \\
-Z_{21} & Z_{11}
\end{bmatrix}
\]
Where **Det()** is the determinant of the Z-matrix:
\[
\text{Det}(\mathbf{Z}) = Z_{11} Z_{22} - Z_{12} Z_{21}
\]
### Steps to Convert:
1. **Find the determinant of the Z-matrix:**
\[
\text{Det}(\mathbf{Z}) = Z_{11}Z_{22} - Z_{12}Z_{21}
\]
2. **Calculate each Y-parameter:**
\[
Y_{11} = \frac{Z_{22}}{\text{Det}(\mathbf{Z})}
\]
\[
Y_{12} = \frac{-Z_{12}}{\text{Det}(\mathbf{Z})}
\]
\[
Y_{21} = \frac{-Z_{21}}{\text{Det}(\mathbf{Z})}
\]
\[
Y_{22} = \frac{Z_{11}}{\text{Det}(\mathbf{Z})}
\]
This method applies to a 2-port network, which is common in electrical engineering. If you have a larger matrix (for multi-port networks), the same principle of matrix inversion applies.