πŸ”
How to convert Y parameters to ABCD parameters?

2 Answers

 
️
Best answer
To convert Y parameters (admittance parameters) to ABCD parameters (transmission parameters), you can use the following formulas. Given a two-port network characterized by its Y parameters:

\[
\begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
\]

The ABCD parameters are defined as:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

The relationships between Y parameters and ABCD parameters are given by:

\[
A = \frac{Y_{22}}{Y_{11}Y_{22} - Y_{12}Y_{21}}, \quad B = \frac{1}{Y_{11}} - \frac{Y_{12}}{Y_{11}(Y_{22}Y_{11} - Y_{12}Y_{21})}
\]

\[
C = \frac{1}{Y_{22}} - \frac{Y_{21}}{Y_{22}(Y_{22}Y_{11} - Y_{12}Y_{21})}, \quad D = \frac{Y_{11}}{Y_{11}Y_{22} - Y_{12}Y_{21}}
\]

### Step-by-Step Conversion

1. **Calculate \(A\):**
   \[
   A = \frac{Y_{22}}{Y_{11}Y_{22} - Y_{12}Y_{21}}
   \]

2. **Calculate \(B\):**
   \[
   B = \frac{1}{Y_{11}} - \frac{Y_{12}}{Y_{11}(Y_{22}Y_{11} - Y_{12}Y_{21})}
   \]

3. **Calculate \(C\):**
   \[
   C = \frac{1}{Y_{22}} - \frac{Y_{21}}{Y_{22}(Y_{22}Y_{11} - Y_{12}Y_{21})}
   \]

4. **Calculate \(D\):**
   \[
   D = \frac{Y_{11}}{Y_{11}Y_{22} - Y_{12}Y_{21}}
   \]

### Example
If you have the following Y parameters:
- \(Y_{11} = 1 + j2\)
- \(Y_{12} = 0.5 + j0.5\)
- \(Y_{21} = 0.5 - j0.5\)
- \(Y_{22} = 2 - j1\)

You can plug these values into the equations above to find the corresponding ABCD parameters.

Let me know if you need further explanation or a specific example!
0 like 0 dislike
To convert \(Y\) parameters (admittance parameters) to \(ABCD\) parameters (transmission or chain parameters), you can use the following method. Here’s a step-by-step guide:

### Given
- The \(Y\) parameters are defined as:
  \[
  \begin{bmatrix}
  I_1 \\
  I_2
  \end{bmatrix}
  =
  \begin{bmatrix}
  Y_{11} & Y_{12} \\
  Y_{21} & Y_{22}
  \end{bmatrix}
  \begin{bmatrix}
  V_1 \\
  V_2
  \end{bmatrix}
  \]

### \(Y\) to \(ABCD\) Parameters Conversion

1. **Express the \(V\) and \(I\) relationship in terms of \(Y\) parameters:**
   \[
   \begin{bmatrix}
   V_1 \\
   V_2
   \end{bmatrix}
   =
   \begin{bmatrix}
   Z_{11} & Z_{12} \\
   Z_{21} & Z_{22}
   \end{bmatrix}
   \begin{bmatrix}
   I_1 \\
   I_2
   \end{bmatrix}
   \]
   Where \(Z\) parameters are the inverse of the \(Y\) parameters matrix.

2. **Calculate the inverse of the \(Y\) parameters matrix to get the \(Z\) parameters:**
   \[
   \begin{bmatrix}
   Z_{11} & Z_{12} \\
   Z_{21} & Z_{22}
   \end{bmatrix}
   =
   \begin{bmatrix}
   Y_{11} & Y_{12} \\
   Y_{21} & Y_{22}
   \end{bmatrix}^{-1}
   \]
   To find the inverse:
   \[
   \text{Inverse} = \frac{1}{\text{det}(Y)} \begin{bmatrix}
   Y_{22} & -Y_{12} \\
   -Y_{21} & Y_{11}
   \end{bmatrix}
   \]
   where \(\text{det}(Y) = Y_{11}Y_{22} - Y_{12}Y_{21}\).

3. **Identify \(ABCD\) parameters:**
   The \(ABCD\) parameters can be directly derived from the \(Z\) parameters:
   \[
   \begin{bmatrix}
   V_1 \\
   V_2
   \end{bmatrix}
   =
   \begin{bmatrix}
   A & B \\
   C & D
   \end{bmatrix}
   \begin{bmatrix}
   I_1 \\
   I_2
   \end{bmatrix}
   \]
   where:
   \[
   A = Z_{11} \text{ (or } \frac{Z_{11}}{Z_{21}} \text{ depending on the formulation)}
   \]
   \[
   B = Z_{12}
   \]
   \[
   C = \frac{1}{Z_{21}} \text{ (or } Z_{21} \text{ if in series)}
   \]
   \[
   D = \frac{1}{Z_{22}}
   \]

### Example

Suppose you have the following \(Y\) parameters:
\[
\begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
=
\begin{bmatrix}
0.2 & 0.1 \\
0.1 & 0.3
\end{bmatrix}
\]

1. **Calculate \(Z\) parameters:**
   \[
   \text{det}(Y) = (0.2 \times 0.3) - (0.1 \times 0.1) = 0.06 - 0.01 = 0.05
   \]
   \[
   \text{Inverse}(Y) = \frac{1}{0.05} \begin{bmatrix}
   0.3 & -0.1 \\
   -0.1 & 0.2
   \end{bmatrix}
   =
   \begin{bmatrix}
   6 & -2 \\
   -2 & 4
   \end{bmatrix}
   \]

2. **Determine \(ABCD\) parameters:**
   \[
   A = Z_{11} = 6
   \]
   \[
   B = Z_{12} = -2
   \]
   \[
   C = -2
   \]
   \[
   D = 4
   \]

   So, the \(ABCD\) parameters are:
   \[
   \begin{bmatrix}
   6 & -2 \\
   -2 & 4
   \end{bmatrix}
   \]

### Summary

To convert \(Y\) parameters to \(ABCD\) parameters, you first need to compute the \(Z\) parameters by inverting the \(Y\) matrix, and then use these \(Z\) parameters to derive the \(ABCD\) parameters. The specific formulas might vary slightly depending on the exact context and conventions used, but this approach outlines the general process.
0 like 0 dislike

Related questions

How to convert y-parameters to ABCD parameters?
Answer : Converting Y-parameters (admittance parameters) to ABCD parameters (also known as transmission parameters) is a common task in network analysis, particularly for two-port networks in electrical engineering. Here, I ... d like to convert or if you need more examples or explanations, feel free to ask!...

Show More

Convert the following Boolean equation to standard SOP form and implement using NAND-NAND logic: (i) y = A'B'C' + ABC'D' + A'C'D' (ii) y = PQ + P'QR + PQR.
Answer : To convert Boolean equations to standard Sum of Products (SOP) form and implement them using NAND-NAND logic, follow these steps: ### 1. Boolean Equation: \( y = A'B'C' + ABC'D' + ... by first expressing the terms as NAND operations and then combining them using NAND gates to get the final output....

Show More

How to convert Z parameters to y parameters?
Answer : To convert Z parameters (impedance parameters) to Y parameters (admittance parameters) in electrical engineering, you can use the following relationship. Given a network with impedance ... parameters, which are sometimes more convenient for circuit analysis, especially in parallel circuits....

Show More

How to convert z parameters to Y parameters?
Answer : To convert **Z-parameters** (impedance parameters) to **Y-parameters** (admittance parameters), follow these steps: ### Matrix Representation: If you have the Z-parameter matrix: \[ \mathbf{Z ... If you have a larger matrix (for multi-port networks), the same principle of matrix inversion applies....

Show More

How to convert Z-parameters to y parameters?
Answer : Converting Z-parameters (impedance parameters) to Y-parameters (admittance parameters) involves using matrix operations. Here's a detailed explanation of the conversion process: ### Definitions - **Z- ... \end{bmatrix} \] This method can be generalized to larger matrices using similar principles....

Show More
Welcome to Electrical Engineering, where you can ask questions and receive answers from other members of the community.