To determine the voltage regulation at 0.8 power factor lagging for the transformer, we first need to calculate the full-load current on the low voltage (LV) side, then find the equivalent reactance and resistance from the tests.
1. **Full-load Current (I_FL)**:
\[
I_{FL} = \frac{20,000 \text{ VA}}{220 \text{ V}} = 90.91 \text{ A}
\]
2. **From O.C. Test**:
\[
V_{oc} = 220 \text{ V}, \quad I_{oc} = 4.2 \text{ A}, \quad P_{oc} = 148 \text{ W}
\]
\[
R_{oc} = \frac{P_{oc}}{I_{oc}^2} = \frac{148}{(4.2)^2} \approx 8.45 \Omega
\]
\[
Z_{oc} = \frac{V_{oc}}{I_{oc}} = \frac{220}{4.2} \approx 52.38 \Omega
\]
\[
X_{oc} = \sqrt{Z_{oc}^2 - R_{oc}^2} \approx \sqrt{52.38^2 - 8.45^2} \approx 52.25 \Omega
\]
3. **From S.C. Test**:
\[
V_{sc} = 86 \text{ V}, \quad I_{sc} = 10.5 \text{ A}, \quad P_{sc} = 360 \text{ W}
\]
\[
R_{sc} = \frac{P_{sc}}{I_{sc}^2} = \frac{360}{(10.5)^2} \approx 3.27 \Omega
\]
\[
Z_{sc} = \frac{V_{sc}}{I_{sc}} = \frac{86}{10.5} \approx 8.19 \Omega
\]
\[
X_{sc} = \sqrt{Z_{sc}^2 - R_{sc}^2} \approx \sqrt{8.19^2 - 3.27^2} \approx 7.94 \Omega
\]
4. **Equivalent Circuit Parameters**:
\[
R_{eq} \approx R_{sc} = 3.27 \Omega, \quad X_{eq} \approx X_{sc} = 7.94 \Omega
\]
5. **Voltage Drop (V_drop)**:
\[
I_{FL} = 90.91 \text{ A}, \quad \text{at } 0.8 \text{ P.F.}:
\]
\[
V_{drop} = I_{FL} \times (R_{eq} \cos \phi + X_{eq} \sin \phi)
\]
Where \(\cos \phi = 0.8\) and \(\sin \phi = \sqrt{1 - (0.8)^2} \approx 0.6\):
\[
V_{drop} = 90.91 \times (3.27 \times 0.8 + 7.94 \times 0.6) \approx 90.91 \times (2.616 + 4.764) \approx 90.91 \times 7.38 \approx 670.61 \text{ V}
\]
6. **Voltage Regulation**:
\[
V_{reg} = \frac{V_{drop}}{V_{FL}} \times 100 = \frac{670.61}{220} \times 100 \approx 304.8\%
\]
Thus, the ultimate regulation at 0.8 power factor lagging at full load is approximately **304.8%**.